H∞ optimal approximation for causal spline interpolation
نویسندگان
چکیده
منابع مشابه
H∞ Optimal Approximation for Causal Spline Interpolation
In this paper, we give a causal solution to the problem of spline interpolation using H∞ optimal approximation. Generally speaking, spline interpolation requires filtering the whole sampled data, the past and the future, to reconstruct the inter-sample values. This leads to non-causality of the filter, and this becomes a critical issue for real-time applications. Our objective here is to derive...
متن کاملH-infinity Optimal Approximation for Causal Spline Interpolation
In this paper, we give a causal solution to the problem of spline interpolation using H∞ optimal approximation. Generally speaking, spline interpolation requires filtering the whole sampled data, the past and the future, to reconstruct the inter-sample values. This leads to non-causality of the filter, and this becomes a critical issue for real-time applications. Our objective here is to derive...
متن کاملApproximation order of bivariate spline interpolation for arbitrary smoothness
By using the algorithm of Nfimberger and Riessinger (1995), we construct Hermite interpolation sets for spaces of bivariate splines Sq(d 1 ) of arbitrary smoothness defined on the uniform type triangulations. It is shown that our Hermite interpolation method yields optimal approximation order for q >~ 3.5r + 1. In order to prove this, we use the concept of weak interpolation and arguments of Bi...
متن کاملAn ${cal O}(h^{8})$ optimal B-spline collocation for solving higher order boundary value problems
As we know the approximation solution of seventh order two points boundary value problems based on B-spline of degree eight has only ${cal O}(h^{2})$ accuracy and this approximation is non-optimal. In this work, we obtain an optimal spline collocation method for solving the general nonlinear seventh order two points boundary value problems. The ${cal O}(h^{8})$ convergence analysis, mainly base...
متن کاملOptimal Spline Approximation via ℓ0-Minimization
Splines are part of the standard toolbox for the approximation of functions and curves in Rd . Still, the problem of finding the spline that best approximates an input function or curve is ill-posed, since in general this yields a “spline” with an infinite number of segments. The problem can be regularized by adding a penalty term for the number of spline segments. We show how this idea can be ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Signal Processing
سال: 2011
ISSN: 0165-1684
DOI: 10.1016/j.sigpro.2010.06.015